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A theory of time-dependent two-dimensional detonation is developed for an explosive 
with a finite-thickness reaction zone. A representative initial-boundary-value prob- 
lem is treated that illustrates how the planar shock of an initially one-dimensional 
detonation becomes non-planar in response to the action of an edge rarefaction that 
is generated at  the explosive’s lateral surface. The solution of this time-dependent 
problem has a wave-hierarchy structure that at late times includes a weakly 
two-dimensional hyperbolic region and a fully two-dimensional parabolic region. The 
wave head of the rarefaction is carried by the hyperbolic region. We show that the 
shock locus is analytic at the wave head. The dynamics of the final approach to 
two-dimensional steady-state detonation is controlled by Burgers’ equation for the 
shock locus. We also present some results concerning the stability of the solutions 
to our problem. 

1. Introduction 
In this paper we present the first extension of the theory of steady two-dimensional 

detonation waves (Bdzil 1976, 1981) to include time-dependent effects. We consider 
how an edge rarefaction, caused by a change in the confinement of the detonation, 
interacts with a finite-thickness reaction zone to produce a non-planar detonation. 
Specifically, we describe the transients that carry an initially one-dimensional 
detonation into a steady-state two-dimensional unsupported detonation. The follow- 
ing initial-boundary-value problem is solved. Prior to time zero, an unsupported 
steady plane Zeldovich-von Neumann-Doering (ZND) detonation wave is propaga- 
ting in an infinitely wide explosive. At time zero the detonation encounters a corner : 
an interface parallel to the original direction of propagation, with vacuum on the 
right and explosive on the left. The flow divergence produced by the expansion of 
the explosive products into the vacuum causes the leading shock to curve. After a 
sufficiently long time, the wave assumes an asymptotically steady profile. 

The theory of the propagation of steady multidimensional detonation in a 
finite-width explosive or rate stick (a pipe filled with explosive used in many standard 
explosive tests; Bdzil 1981) is an asymptotic theory in which the reaction-zone 
thickness is assumed to be thin in comparison with a relevant flow dimension (the 
diameter of the explosive). The steady wave consists of a curved leading shock 
followed by the reaction zone. The leading-order properties of the detonation are 
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determined by first solving an ordinary differential equation for the shock locus, 
subject to the condition that the shock slope is specified at the explosive/inert 
interface. Once the shock locus is found, the gasdynamic state in the reaction zone 
behind the shock is determined. 

In our first attempt to generalize this steady result to include time dependence, 
we found that a description on a sufficiently slow timescale (compared with the O(1) 
timescale for the reaction to occur), yields an unsteady theory that is a straightforward 
extension of the steady theory. The ordinary differential equation for the shock locus 
of the steady theory is replaced by a parabolic partial differential equation (PDE) 
in the slow time and a long distance dong the shock. For one form of the reaction-rate 
law, this PDE is Burgers’ equation. The steady solution of this PDE is the steady 
multidimensional detonation solution described above. 

The following question then arises: given that the final approach to the steady 
state is controlled by a parabolic: PDE, how does this equation arise from a 
hyperbolic system? If, in fact, an equation of parabolic type governs the important 
dynamics of stable detonation waves, then it is imperative that we show how such 
an equation arises naturally from the solution of a physically reasonable initial- 
boundary-value problem in which the hyperbolic character of the problem is not 
compromised in any fundamental way. Our objective in this paper is to demonstrate 
how this transition in equation type occurs, and show that at  late times the 
controlling shock dynamics is governed by a parabolic problem. 

The plan of the article is as follows. In $2 we present the form of the reactive Euler 
equations appropriate for the model explosive that we analyse. Our model explosive 
has the property that only a small fraction S2 of the heat release is resolved in time. 
In $ 3 we analyse the dynamics of one-dimensional disturbances to plane unsupported 
steady detonation waves. We explicitly show which timescale is important in the 
absence of transverse disturbances. Sections 4 and 5 contain the principal results of 
this paper. In $4 we discuss the very-long-time dynamics of the multidimensional 
detonation and derive the parabolic: equation that describes its shock dynamics. We 
exhibit the temporal and spatial scales that are relevant for that description. In 55 
we discuss the physical deficiencies of the solution presented in $4. Namely, we point 
out that the infinite region of influence of the parabolic problem is not compatible 
with the finite communication timeH imposed by the underlying hyperbolic character 
of the flow. We then show that the deficiencies of the solution of $4 are resolved by 
noting the existence of a purely hyperbolic region, of small amplitude, that 
propagates ahead of the parabolic region. This hyperbolic region has a discrete wave 
head that propagates at a finite velocity and thus satisfies the physical boundary 
condition placed on the hyperbolic problem. 

Figure 1 contains a summary of the results of $54 and 5 for the small resolved 
heat-release explosive (6 4 1) presented in $2. Of the three timescales indicated, we 
only consider t = O(S1) and t = O(iF2) in this paper. On these two scales the flow is 
divided into three parts : the one-dimensional region (1D) ; the hyperbolic or 
wave-head region (H); and the parabolic region (P). For t = O(6-l) only the 1D and 
hyperbolic regions are present. When t = 0(E2) the hyperbolic equations govern only 
the near-wave-head flow, with most of the flow being controlled by the parabolic 
description. 

Finally in 56 we discuss the results of our calculations. We elucidate the physically 
important aspects of the parabolic: solution of the original initial-boundary-value 
problem and also suggest possible future extensions and directions for this type of 
work. 
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Shock 

FIGURE 1. A schematic representation of the shock locus and the end of the reaction zone ( A  = 1) 
for a two-dimensional detonation in a small resolved heat-release explosive (6 < 1). The material 
to the right (left) of the 2' axis is vacuum (explosive). The flow to the left of the dashed line is 
one-dimensional (lD),  that between the dashed and chain-dotted line is two-dimensional hyperbolic 
(H) and t h a t  to the right of the chain-dotted line is two-dimensional parabolic (P). 

2. Formulation and discussion of the model 
In this section we give the formulation of our problem and discuss the motivation 

for the model that we use to describe the explosive equation of state (EOS). 
We assume that the explosive is an Euler fluid. As such it is entirely modelled by 

specifying the form of the EOS and the rate law for heat release. In  particular, the 
specific internal energy E is given by 

P 
Po 

Eo = ( y - l ) - l A  I ahead of the shock, 

P 
P 

E = (y -  l)-l--q[l - P ( 1  - A ) ]  behind the shock. 

In the above, P, p and A are the dependent variables pressure, density and the 
progress variable of a simple forward exothermic reaction. The parameters y and q 
are respectively the polytropic exponent and the specific heat of reaction of the 
explosive. While this EOS is quite similar to a standard EOS for a polytropic 
explosive used in Bdzil (1981), the model requires some further explanation. 

When the parameter 6 = 1 the internal energy behind the leading shock is given 

P 

P 

by 

E = (y-l)-'--qA, (2.2) 
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which is the polytropic EOS for an explosive with a fully resolved reaction zone. 
When the parameter 6 = 0 the EOS behind the leading shock is given by 

P 
P 

E = (y-l)-*--q, 

which is the polytropic EOS for an explosive for which all the energy release occurs 
instantaneously within the shock. In this limit the unsupported detonation is a 
Chapman-Jouguet (CJ )  detonation. 

In this paper we shall be concerned with the case 

8.g 1 .  (2.4) 

The heat released instantaneously in the shock is q( 1 - P). The remainder of the heat, 
Pq,  is released by a reaction with a finite rate, where the progress of the temporally 
resolved heat release is measured by A. At the leading shock h = 0 and at  the end 
of the reaction zone h = 1 .  The assumption of an unresolved reaction zone within the 
leading shock can be justified if one assumes that there are actually two sequential 
reactions that release heat, the first being very rapid compared with the latter. We 
only consider the case for which this first reaction layer is infinitesimally thin. 

An important motivation for selecting this model is based on a property of real 
explosives. As one travels through the reaction zone in an unsupported ZND 
detonation, a disproportionately large pressure drop is associated with the last 
amount of heat release. This is most easily illustrated by formulas for a 1D ZND wave 
as given in Fickett & Davis (1979). For example, the pressure in the reaction zone 
for a steady 1D unsupported detonation with a polytropic EOS and fully resolved 
chemistry (i.e. S = 1 )  is given by 

P =  PCJ[1+(1-h)']. (2-5) 

P = PCJ(2-;h), (2.6) 

Near the shock, where h = 0, the pressure is approximately 

so that a 10 % change in h leads to a 2.5 % pressure drop. However, near the end of 
the reaction zone, where h x 1, the pressure changes with the square root of changes 
in A. According to (2.5), a 10 yo change in h near h = 1 leads to a 32 yo change in the 
pressure. This dependence of P on h in an unsupported steady 1D detonation is 
obtained for any E(P, p,  A )  that satisfies the thermodynamic conditions (E,P)p,  A > 0 
and (T1/pl/p)s,A > 0 (i.e. the sound speed is real and the isentropes (s = const) are 
concave upwards). For any such E ( P ,  p,  A )  the pressure near the end of the reaction 
zone is 

while near the shock 

The notation convention is 

p = P,,o,,+O(h). 

V fixed y and z. 

Thus our model, which has a small amount of resolved heat release, reflects the 
important property that near the t:nd of the reaction zone an O ( P )  heat release is 
associated with a much larger O(S) pressure drop. 
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There is another motivation for choosing this model. In order to have a cleanly 
defined edge-rarefaction initial-value problem, the 1D detonation should be stable 
to local two-dimensional (2D) disturbances. Erpenbeck (1965) has shown that for 
the case of a fully resolved reaction zone with a state-independent rate, the 1D 
detonation wave is unstable to local 2D disturbances for a wide range of cases. 
However, Erpenbeck also showed that when the heat release of the detonation is 
smaller than the internal energy ahead of the shock (i.e. the weak-shock limit), or 
when the detonation is strongly overdriven (i.e. when the heat release of the 
detonation is small compared with the energy input to the flow by the supporting 
piston), that the detonation is stable to local 2D disturbances. In both instances, 
stability is found when the resolved detonation energy release is small compared with 
other energy terms in the system. For our model, where the unresolved heat release 
in the leading shock is much greater than that in the following flow, i.e. 

S2/(1-82) Q 1, (2.7) 

we might also expect to find that the 1D steady detonation is stable to transverse 
disturbances. However, we are obliged to show this. In 55 we prove stability. 

We now give the formulation of the problem. The detonation wave is assumed 
initially to be a plane, steady unsupported detonation travelling at the CJ velocity 
DcJ. The coordinate z1 measures distance in a stationary lab frame (1) in the direction 
of initial propagation, where z1 = D,, t is the instantaneous position of the undisturbed 
shock and t is time. The disturbed shock locus is at z1 = $(r ,  t )  + D,, t ,  where $( r ,  t )  
measures the distance from the undisturbed 1D shock locus. The coordinate r is 
perpendicular to z1 and measures distance along the undisturbed shock. In  our 
analysis we shall use the basic independent variables 

z,  r ,  t ,  (2.8) 

where z = z1 - $(r ,  t )  - D,, t is a measure of distance from the instantaneous disturbed 
shock position. The particle velocity we use is 

u = ul-DCJez = ur9r+uzez. (2.9) 
i 

The fluid description is given by the equations for a reactive Euler fluid, specialized 
to our EOS and rate law. These equations reflect conservation of mass, momentum, 
energy and a rate equation for the heat release. The equations that we list have been 
derived from the basic set and are computationally more convenient. 

The governing equations we use are 

mass: N(p)+M*(pu) = 0, 

master: p - 1 N ( P ) - N ( ~ u * u ) - u ~ M ( ~ u ~ u ) + ~ 2 M ~ u  = (y-  1)S2pR, 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

with 
k ( O < A < l ) ,  

0 ( A  = l ) ,  
R =( 
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and where k is a constant. The symbols used above are 

(2.15) 

and where c2 = y P / p  is the frozen sound speed. 
The shock conditions that we write down reflect the strong-shock approximation 

(i.e. formally setting Po = 0). Immediately behind the shock at z = 0, the state 
variables are denoted by a plus subscript. The shock conditions are 

Po - - y ( y +  l)- l-(y+ l)-IS, 
P+ 
- (2.16) 

(2.17) uz+ - 
DCJ 
--- 

(2.18) 

(2.19) 

SE 1 -  (1-a2)[1 + td,,,"l]l (2.20) [ ( 1 + $ , t / D C J ) 2  * 

where 

Also h = 0 at z = 0. 
The vorticity across the shock can be calculated explicitly (see Hayes 1957) as 

a+ = -e, (P+ -PO)~[(DCJ+ J . t ) - J , r  $ , w - J , r t l  (2.21) 

where e, is the third unit vector in the three-dimensional orthogonal coordinate triad 
ez, e,, e,. In all the calculations that we shall refer to (i.e. to the order that we 
calculate) the flow can be taken to be irrotational. 

P+ ~ o [ l +  (@,r)'I 

3. The dynamics of the 1D detonation 
As a precursor to the solution of the full problem with the edge rarefaction, we 

examine the purely 1D problem and explain its dynamics. The most important thing 
that we will show is that when the steady 1D solution is perturbed, the natural 
timescale for the evolution of the flow is t ,  = 6t or t = O(8-l). 

First we consider the steady solution. It can be represented by the expansions 

(3.1) I U, = -Dcja-'+6Dcj(y+ l ) -1u+62u(2)+. . . ,  

P = Po DE J(y + 1 ) -1 + 6P') + P P )  + . . . , 
p = ap, + 6p(') + Pp@' + . . . , h = A@) + . . . . 

For convenience we define 
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The steady solution depends only on z*. It is easy to show that for the assumed form 
of the solution, the mass, master and momentum equations lead to 

uu,,* = 1. (3.3) 

A!;; = -2. (3.4) 

u+= 1, atz* = O .  (3.5) 

u = (1  + 22*)4 A(@ = - 22*. (3.6) 

A t  leading order the rate equation is 

The solution of these equations must satisfy the shock boundary conditions 

These solutions have the simple form 

Note that this solution shows that, to O(S), the sonic point (i.e. where c2- uL vanishes) 
is precisely the location where 

(3.7) u=o ,  A(O) = 1 z* =--1 
2' 

In addition, PC') a u and p( l )  a u. 
We now show that the natural timescale for disturbances to this solution is St. 

Suppose that we expand the solution as in (3.1), and we allow for dependence of the 
perturbed variables on both z* and t .  In addition, the shock relations indicate that 
we should allow for a shock velocity perturbation of the form 

J,t  = S2JIi)  + . . . . (3.8) 

It is easy to show that u as well as pC1) and p(l )  are only functions of z*.  However, 
at  the next order we can show that a secularity develops in t if u is initially not 
identically the steady solution. Specifically, we find that 

(3.9) u(2) - t .  

This difficulty is easily resolved using multiple-scaling arguments in time. In  
particular, allowing for dependence on the timescale t ,  = & ,  we find that in the 
reaction zone u obeys the evolution equation 

u,,+uu,z* = 1,  7 = &k&, (3.10) 

subject to the boundary condition 

u prescribed at  z* = -1 2 (3.11) 

and initial data on z* E ( -+, 0). The shock-speed perturbation is given by the shock 
relation 

J , ,  = pD,,(u?- 1) .  (3.12) 

Again pC1) a u and p ( l )  oc u. The solution of problem (3.10)-(3.11) gives a uniform 
description of the 1D detonation when a disturbance is applied to the 1D steady-state 
solution. Importantly, the controlling timescale is t , .  

4. The dynamics of the 2D detonation 
In this section we discuss the dynamics of the 2D detonation wave. Two features 

distinguish such a wave. On the scale of the reaction zone the displacement of the 
leading shock from plane can be 0(1 )  or larger and the changes in the shock deflection 
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occur over a long radial distance. Hdzil (1976) has discussed the character of the 
steady detonation for this case and shown that the relevant radial coordinate is 
r1 = Sr. Here we analyse the approach to the steady state for this model. 

Following the steady theory, we assume that the shock locus is an O(1) function 
that changes shape on the rl scale, a wale that is large compared to the reaction-zone 
thickness. From the shock conditions, particularly (2.20), we see that time dependence 
will enter the O(6) flow only if we assume a timescale t ,  = S2t.  That is, if the timescale 
is t,, the quantities (J,,), and J in (2.20) are of the same order. In a sense, this 
defines a strong-interaction limit among an O( 1) shock locus, an O(S1) radial variable 
and time. It follows that a non-trivial distinguished limit is obtained if we assume that 
the solution depends on the scales S2t and Sr. For convenience, we introduce the scaled 
variables 

z*, X -!j~?kD,:(Sr), T G +a2k(S2t). (4.1) 

Following Bdzil (1976), we introduce the following expansions for uz, ur and the 
shock displacement J : 

U, = - Dcj + SDCj(7 + l)-' U(Z*,  X, T) + . . . , 

I ur = SDCJ(y+l)-'V(z*,X,T)+... ,  

J = -20CJ k-1a-2y(x, T)+. . . . 

The expansions for P, p and h are given by (3.1). 
Since the flow is irrotational through O(S2), it follows that 

qz* = 0, v = V ( X ,  T). (4.3) 

Applying the shock condition to (4.3), we find 

v = - !Px. (4.4) 

The mass, master and z-component momentum equations lead to 

I Y ~ J , ~ * -  Y x  = 1 .  (4.5) 

UU.,* + ! P X X  = 1. (4.6) 

Substituting (4.4) into (4.5), in the reaction zone we obtain 

Equation (4.6) is exactly the steady-state result, so that to O ( P )  the governing 
PDEs are steady. The only time dependence in the solution enters from the O(S) 
shock condition 

Solving (4.6) subject to (4.7) gives the solution 

u = [(l- !PX,) 22*+ 1 - !PT- ( !PX)2]t.  (4.8) 

The O(S) solution (4.8) can be thought of as a quasisteady result. 

in the reaction zone. Requiring the flow to be transonic and U to be real, forces 
For the unsupported detonation that we are considering, the flow must be transonic 

U = O  atz*=-+.  (4.9) 

Condition (4.9) can be rigorously derived by requiring that the O(S2) solution be free 
of a secular non-uniformity in t,. Applying this condition to (4.8) shows that the 
shock displacement must satisfy the evolution equation 

y , T + ( y , X ) z  = y , X X .  (4.10) 
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Once Y is found, U ,  V ,  pC1) and p(l) are given by the simple formulae 

(4.11) I u = (1  - !PXX)+( 1 + 22*)+, v = - !PX, 

pC1) = p0D&(y+ l)- lU, p(1) = poa2(y+ l)- lU. 

The solution for A(O) is given by (3.6). 
As we have shown, the dynamical character of the 1D solution is given by the 

timescale t,. In contrast, we find that for the 2D problem the interesting dynamics 
occurs on a much slower timescale, specifically t,  = 8% Two features of this solution 
are the most significant. First, this solution occupies a large spatial and temporal 
region of the flow and describes a large shock deflection and flow divergence. 
Secondly, we find that the problem can be reduced to an evolution equation for the 
shock that is a second-order parabolic equation in t ,  and rl. This equation admits 
the steady 2D solution, which can be shown to be stable. The solution described in 
this section should be regarded as the principal result of this paper. 

It is worth noting that if we let Y,x = C, one differentiation of (4.10) with respect 
to X yields Burgers' equation for the shock slope C, namely 

(4.12) 

If we assume a different form of the rate law (i.e. other than a constant rate), then 
we obtain a slightly different version of (4.10), which still has parabolic character but 
is not Burgers' equation. 

We have seen that by computing Y we can completely calculate the flow accurate 
to O(8).  The initial data for Y for the initial-boundary-value problem that we have 
posed is an undisturbed flat shock, i.e. 

Y=O a t T = O  forO<X<oO. (4.13) 

We must specify a boundary condition a t  X = 0 to give a complete problem for Y. 
Such a boundary condition cannot be prescribed arbitrarily but must be consistent 
with the character of the flow near X = 0. A detailed discussion of the flow near X = 0 
is given in Appendix A. There we show that the flow must be precisely sonic at X = 0. 
It then follows that the appropriate boundary condition at  the vacuum interface is 

Y,T+(Y,X)'=l a t X = 0 .  (4.14) 

Thus the problem for Y is (4.10) with initial condition (4.13) and boundary 
condition (4.14). The steady solution is determined with the additional boundary 
condition that 

Y(0, T) = 0, (4.15) 

and given simply by 
Y = -In (X+ 1).  (4.16) 

Equation (4.16) shows that, for the semi-infinite explosive problem, the shock at the 
edge falls an infinite distance behind the undisturbed shock. 

The linear stability of (4.16) can be investigated most conveniently by introducing 
the Hopf-Cole variable @, such that 

Y = -In@. (4.17) 

The variable @ satisfies the ordinary heat equation, and the problem in the new 
variable is nonlinear in the edge boundary condition placed on @. The perturbation 
of @ about the steady state, 1+X, satisfies a simple linear problem, which can be 
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solved exactly using a Laplace transform in time. This analysis shows linear stability 
to  infinitesimal disturbances, where for large T 

with 

2fi (X+2T)+2T X2 
@-(l+X)--erf  (2) - -- n? (X+2T)2+(2T)zeXP (-a)+"" (4*18) 

1 
@ - ( l + X )  --- (KTF+. . . a t  X = 0. (4.19) 

The solution for Y for small times can also be found analytically. This limiting 
solution exhibits some of the properties of region P that we will require later in our 
analysis. We find that for small T 

Y x 1 -@ = (T++X2) erfc -Texp -- 
( 2 3  Ti ( 3+ (4.20) 

Also, we find that U and V are 

The complete solution for Y was found numerically. The results of these calculations 
are displayed in $85 and 6. 

5. Evolution near the wave head 
I n  this section we point out somc of the deficiencies of the solution presented in 

$4 and show how they are resolved by the existence of a purely hyperbolic region 
near the wave head of the original disturbance (defined here as the leftmost point 
on the shock disturbed from the 1D steady shock). 

It should be emphasized that the existence of the wave head is a physically 
imposed boundary condition that is required by the hyperbolic character of our 
problem. To the left of the wave head the shock must be completely undisturbed 
(consistent with the initial data), since it lies outside the region of influence of the 
disturbance (rarefaction). 

The solution of $4 suffers from a deficiency shown clearly by the formula (4.20) 
for Y. No matter how large X is, Y is non-zero; there is no finite X such that Y is 
identically zero. Thus the solution fails to satisfy the physical boundary condition. 

I n  the standard way, failure of an asymptotic solution to  satisfy a globally imposed 
boundary condition implies the existence of an adjacent adjustment layer. Certain 
features of this layer are quite clear. We expect that  if the adjustment region is to  
predict the wave head then it must be a hyperbolic region (we will hence refer to it 
as region H and to  the parabolic region of $4 as region P). Examining the region-P 
solution we find that far into the interior of the flow the shock displacement Y is 
small, the transverse disturbances are small and the flow is nearly 1D. Since this 
weakly 2D flow must connect to  the 1D region, the results of Q 3 strongly suggest that 
the relevant timescale for region H is t,. 

The solution in region H must formally match with the solution in region P, and 
this requirement puts an additional restriction on the scaling allowed in region H. 
I n  particular, if the dynamics of H occur on t ,  and the dynamics of P occur on t2, 
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then we expect that the early-time result of P must match with the late-time result 
of H. For early times the spatial dependence of region P is represented by the 
similarity variable (in original variables) 

?+/ti.  (5.1) 

During the matching, we expect that this representation of the spatial dependence 
is maintained between regions P and H. Indeed, there is a precedent for this type 
of matching found in the work of Stewart (1985). There it was found, in the context 
of a 1D time-dependent problem describing transition to detonation, that the 
short-time hyperbolic phase matched to a long-time parabolic phase via a spatial 
dependence represented by similarity variables. Given this principle, we see that if 
t ,  governs the dynamics of H, then we are forced to introduce the lengthscale 

r i  E &r (5.2) 

in region H, if the similarity variable (5.1) is to be O(1). 

5.1. Formulation of region H 
With these principles in mind, we now turn to the description of region H and look 
for a solution in terms of the scaled variables z*,  x and 7 ,  where x and 7 are defined 

T 
as' 

7 = &dlk(rYt) = - 
(5.3) 

The form that we use for the dependent variables u, and $ in region H is different 
from the one used in region P. Equation (3.12) shows that the shock-velocity 
perturbation in the 1D time-dependent problem is O(S2). Since our assumed timescale 
is t , ,  this suggests that $ = O(6) in region H. In turn, the shock condition (2.18) along 
with the ri distance scale suggests that u, = O ( 8 ) .  Therefore we expand u,, u, and 
@ as 

(5.4) i 
uz = -DCJ a-' +&DCJ(y+ l)-'U(X, z*, 7 )  +. 
u, = &aiDcJ(y+l)-'v(X,z*,T)+ ..., 
$ = - a  a - l2DC J k-l$(x, 7) + . . . . 

The expansions for P, p and h are given by (3.1). A t  O(S) the mass, energy, 
z-momentum and shock equations again give the simple results 

pel) = POD&+ l)-'u, (5 .5)  

(5.6) P(l) = a 2 po(y+ l)-'u. 

At 0(a2) the master equation gives 

u,,+uu,z*-v,, = 1 (0 2 z* > -i), (5.7) 

u,,+uu,z.-v,, = 0 (x *  < -+), (5 .8)  

while the r-momentum equation a t  O ( 8 )  and the elimination of P$) using (5 .5)  
shows that to leading order the flow is irrotational: 

u,z+v,z* = 0. (5.9) 
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The last two equations plus appropriate boundary conditions and initial data form 
a hyperbolic system for u and v. We shall show that this system resolves the 
boundary-condition difficulty in region P. 

We assume that the initial data for (5.7)-(5.9) simply comprise the 1D steady 

u = (1+22*)4, v = o at 7 = 0. (5.10) solution 

Equation (5.10) is appropriate if and only if the 1D region is stable to local transverse 
perturbations. I n  85.2 we show that the 1D region is stable. It follows from the shock 

(5.11) 
conditions that 

u+ = (l-$,$, w+ = - $,x a t  z* = O .  

The boundary conditions at the edge x = 0, -i < z* < 0, and a t  the end of the 
reaction zone z* = -$ do not follow so easily. We require that the flow be sonic on 
both : 

(5.12) 

These last conditions are discussed in detail in Appendix B. Here we simply argue 
for the appropriateness of these boundary conditions. At early times in the evolution 
of the full problem, there is no region P, just region H. Condition (5.12) is consistent 
with the fact that  the flow a t  x = 0 is sonic a t  the shock for an unconfined explosive 
(see Appendix A) and that region H is adjacent to the 1D flow, where u = O  a t  
z* = -$. The data provided by (5.12) determine the form of the solution at the wave 
head for all times. As time progresses, the wave head (i.e. the furthest point of 
disturbance on the shock) propagates into the interior of the flow. After a sufficiently 
long time, the wave head is far into the explosive as measured from the edge and 
the solution there is not sensitive to  all the details of the edge start-up transient. Then 
the region-H solution must be consistent with the region-P solution, which has the 
property that the flow is sonic at z* = -+ and x = 0. Since we are primarily interested 
in the flow near the wave head at long times when region P governs the flow near 
z = 0, (5.12) is certainly compatible with the region-P problem. Later we show that 
regions H and P do indeed match. 

I n  summary, the complete problem for region H is represented by (5.7)-(5.9) 
solved subject to (5.11), (5.12) and the initial data (5.10). The problem is essentially 
a nonlinear wave-propagation problem on a membrane bounded by the boundaries 
of the shock and the sonic locus. At time zero the equivalent of an impulse is applied 
to the membrane along x = 0,  since the sonic condition imposed is inconsistent with 
the 1D solution. A disturbance then propagates into the interior a t  a finite speed, 
defining the wave head as well as the complete domain of influence. 

The form of the governing equations for region H could have been anticipated. 
Equations similar to  (5.7)-(5.9) arise in other 2D nonlinear-wave problems. Equations 
(5.8) and (5.9) are used to describe the unsteady flow around an oscillating transonic 
airfoil. Cole (1977) discusses the airfoil problem and some of the properties of this 
hyperbolic system, including the infinite speed of the backward characteristic. 
Equation (5.7) with the source term on the right-hand side replaced by linear 
dispersion, together with (5.9), is the weakly 2D Korteweg-de Vries (KdV) equation. 
Bryant (1982) used this system to describe the oblique interaction of water waves. 
Some of the mathematical properties of the 2D KdV equation are discussed by 
Johnson (1983). 

We continue the analysis of our problem by introducing a potential into (5.7)-(5.9). 
Making this change of variable and writing the solution as the 1D steady-state 
solution plus a deviation 

u = g + p $ h 5 ,  w = --&, 5 = (1 +2z*)4, (5.13) 

u = 0 at z* = -! and on x = 0, -$ < z* < 0. 
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in the reaction zone, (5.7) and (5.9) become 

4&+ $,a+ c4,x,+t[(c-'4,~)21,g = 0. (5.14) 

Equation (5.14) is to be solved subject to the sonic locus condition (see Appendix B) 

(5.15) 

the shock conditions, which can be rewritten as 

[1+4.~14,~z+i4,27=0 a t e =  1, (5.16) 

and the initial condition 

# = O  a t 7 = 0 .  (5.17) 

It would be difficult to find the complete solution of the nonlinear problem that 
governs region H. However, only the long-time asymptotic solution is required of H 
to formally show that regions P and H match. We now turn to this question. 

If we write the region-P solution (4.21) in region-H variables and take the limit 
as 6+0, we immediately see that the spatial dependence of region P is retained 
through the similarity variable 

u = x/7k (5.18) 

The small-time solution of P is the relevant one for matching with the long-time 
solution of H and, in particular, (4.21) gives the matching condition that 

u = c + ~ - l + , ~  = {[I -erfc (@)It, 
as 7+ 00 with cr fixed. (5.19) 

1 1  
Now we show that the asymptotic solution required by matching, as given by 

(5.19), is in fact the leading order term in a long-time expansion for the governing 
problem of region H. Let u and v be represented by 

u = p(u,5)+0(7-i), v = ~@(u,C)+o(1). (5.20) 

Equations (5.7) and (5.9) show that at leading order 

c-lFFC-G,u = 1, G,C = 0, G = G(a) .  (5.21) 

The conditions at the sonic locus require 

F(cr, 0) = F(0,  g) = 0. (5.22) 

In  turn, the shock condition gives rise to the differential condition 

G - c G , , - ~ [ P ( ~ ,  l)],u = 0. (5.23) 

The solution of this problem (with the additional condition that G is bounded at 
u = 00) is straightforward and shows that 

(5.24) 
F = 511- -erfc (+u)]i, 

G = - exp ( -+a2)-u erfc (@), 
2 
7d 
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which is precisely the form of thr: long-time solution required by the matching 
condition (5.19). 

The asymptotic solution that we have exhibited for region H is the one required 
for matching, and has a parabolic character as illustrated by its dependence on the 
similarity variable u. Indeed this solution is seemingly deficient in the sense that i t  
does not predict the existence of a wave head. We will later show that there is a wave 
head in region H that takes the form of a hyperbolic precursor that  precedes the 
larger parabolic-type region moving into the 1D detonation. 

5.2. The linear stability of region H 
I n  this subsection we consider the linear hydrodynamic stability of the 1D steady- 
state solution. I n  the region of the flow that is uninfluenced by the edge rarefaction, 
i t  is important to  have a stable 1D solution so that the flaw into which the rarefaction 
propagates is simple. It is unlikely that any analytical progress could be made on 
the edge-rarefaction problem if the ID steady solution were unstable. One reason for 
introducing the small resolved energy-release model (2.1) was the conjecture, based 
on Erpenbeck's (1965) results, that  this model is stable. We now prove that the model 
is stable to 2D disturbances. With some minor modifications, this analysis also gives 
us the solution to the hyperbolic-precursor problem. 

The stability of the 1D steady solution to small disturbances is governed by the 
linearized form of (5.14) and (5.16) 

$,@ + $,,,+ C $ , m  = 0, 

$,,z+:$,xT = 0 at 5 = 1 ,  

the sonic condition 
$ , , = O  a t ( [=O,  

(5.25) 

(5.26) 

(5.27) 

plus some mn-zero initial condition representing the arbitrary perturbation. Following 
Erpenbeck (1962), we examine the stability of the shock. Equations (5.11) and (5.13) 
relate $ to the shock locus via $,T = -2($,5)5=1. 

We assume that the explosive is laterally infinite, and Fourier-decompose the 
solution in z, 

and Laplace-transform it in r ,  

to get 

(5.28) 

(5.29) 

(5.30) 

(5.31) 

and Q , = O  a t 5 = 0 ,  (5.32) 

where 
r w  

(5.33) 

Further introducing (5.34) 
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into (5.30)-(5.32), we get the inhomogeneous problem that we need to solve: 

y ,C[ - [(2 l s 2 -  1 (iw)'5] y = m, 8, w ) ,  (5.35) 

[s-1(io)'[5($)T=o+(g,b.)7=ol exp (is[), (5.36) 

Y s = O  a t [ = l  (5.37) 

and YC-isY = 0 at [ = 0, (5.38) 

with J0me-s7$dr = s - ~ ( $ ) ~ = ~ - (  Y ) , = ,  exp(-is). (5.39) 

The solution of (5.35)-(5.38) is constructed as an expansion in the eigenfunctions 
of the homogeneous problem, where the eigenfunctions and eigenvalues are Y, and 
iw, respectively. A detailed solution of the homogeneous eigenvalue problem (i.e. 
(5.35)-(5.38) with F([, s, w )  = 0) is presented in Appendix C. To construct a formal 
solution to (5.35)-(5.38), all we need is the orthogonality condition for the homo- 
geneous problem 

jol [Y ,  Y, d[ = 0 (n =k m).  (5.40) 

The solution of (5.35)-(5.38) is 

where 

with 

(5.41) 

(5.42) 

(5.43) 

where from (5.39) the Laplade transform of the shock locus is 
OD jom ePs7$d7 = SP(#)~=~-  C [(i~)~-(iw,)~]-~C,( Y,),=, exp (-is). (5.44) 

12-1 

Now the Laplace transform C, (Y,),,, is the Laplace transform of a bounded 
function of r (i.e. the initial data) and is therefore regular throughout the domain 
of interest (Erpenbeck 1962). Thus the only poles of j," e-sT$d7 that are of interest 
in performing the inverse Laplace transform to get t,J are those of [(iw)2-(iw,)2]3-1. 
The question of stability is therefore determined by the sign of the real part of the 
roots, s,(w), of the equation 

The limiting form of the eigenvalues for both small and large s are calculated in 
Appendix C :  

small s 

(iw)2- (iwJ2 = 0. (5.45) 

'1 (5.46) 
iw, - s4+ ..., 
io, - [t+t(n-2)]n:+O(si) ) J  ( n  = 2, ... 

(5.47) - - [$(4n- 3)$. (5.48) 
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Solving (5.45) for s, we get one root for small 101, 
J .  B. Bdzil and D. 8. Stewart 

9, - - - I  wp+ ..., (5.49) 

and for large IwI 

s, - +Blwli++a,olhlwl-f(fi+ 2/3)+.  . . (n  = I , .  . .). (5.50) 

For the limits of small and large (wl, Re (s) < 0. Thus in these limits the 1D 
steady-state solution is stable to small transverse disturbances. 

5.3. The solution near the wave head 
With this result in hand, we now construct the solution to (5.14) that  satisfies the 
edge rarefaction boundary condition, u = 0 at x = 0 for 0 < [ < 1,  or equivalently 

$,,, = 1 a t  x = 0. (5.51) 

This condition forces u to deviate by an O( 1)  amount from the steady-state solution 
u = 5. Thus at early times, when the wave head is near the edge, the full nonlinear 
problem (5.14)-(5.17) needs to be solved. At late times, (5.24) shows that the solution 
to (5.14)-(5.17) far from the wave head matches the region-P solution (5.19). That 
is at late times, the 0(1) deviations of u from the steady-state solution are carried 
by the region-P solution (4.11). Therefore we expect that the linearized form of 
(5.14)-(5.17) will provide an adequate representation of the flow near the wave head 
a t  late times. 

It would be desirable to find the solution to the full nonlinear problem (5.14)-(5.17) 
for all times. However, the nonlinear problem is not amenable to analysis. The best 
that one could do would be to  find a numerical solution. What we propose to  do 
instead is solve the linear model problem (5.25)-(5.27) subject to the conditions (5.51) 
and (5.17). Then we show that for long times the solution can be represented by (5.20) 
provided that we are not too close to the edge (i.e. in the limit that erfc in (5.24) is 
small). 

Near the wave head the solution has a very different character. It is known 
(Whitham 1974, p. 343) that  the high-frequency temporal components govern the 
behaviour of the solution near the wave head. It is not clear whether the solutions 
of the linear and nonlinear problems are the same near the wave head a t  early times. 
The best we can say is that  we have solved some boundary-value problem that has 
the edge boundary condition ($,,x!,-o = 1 at long times. 

Laplace-transforming the velocity potential q5 as in (5.29) and (5.34), requiring 
(5.17) and assuming that the x-dependence of the solution is given by e-iOnx, we 
construct the solution as an eigenfunction expansion 

(5.52) 

where iw, and Y, are eigenvalues and eigenfunctions of the homogeneous form of 
(5.35)-(5.38) (i.e. F = 0 and (*),=, = 0). I n  terms of these variables, the edge 
boundary condition (5.51) is 

Y,, = s-l exp (is[) at x = 0. (5.53) 

Requiring that (5.52) satisfies (5.53) determines the coefficients A, : 

(5.54) 
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where the integrals appearing in (5.54) are evaluated in Appendix C. The limiting 
form of the eigenvalues for small and large s are given by (5.46)-(5.48). The 
eigenfunctions are computed in Appendix C : 

small s 

K - (K)c=1- ( K ) c = o  - const; (5.55) 

large s 

Yn -Ai[ai+(iw,)f(l-C)] ( n =  1, ...), (5.56) 

where Ai [ ] is the Airy function. Using the above results in (5.29) and (5.34), with 
( # ) 7 = o  = 0, and then inverting the Laplace transform, gives $. 

The solution near the edge and wave head will be constructed separately. Near the 
edge, (5.24) shows that the appropriate distance and timescales are those of the 
parabolic problem, &x and 87. Thus, near the edge, the small-s limit of the inverse 
transform gives the solution 

(5.57) #,z - -% S8-I exp (s7-s4x) de 
1 

and 
. c  

which, from Bateman (1954), become 

,z 1 v =  -6 

(5.58) 

(5.59) 

and u = y+y-l#,c - 01 -4 erfc (&)I. (5.60) 

Equation (5.59) is precisely the form of the long-time solution (5.19) required by the 
matching condition. If we are not too near the edge, fcr 2 1, then the linearized 
solution (5.60) also agrees with the nonlinear solution (5.19). Thus the long-time 
solution of the linearized form of (5.14)-(5.17) matches with the region-P solution, 
provided that we are not too near the edge. 

With the issue of matching behind us, we go on to the most interesting part of the 
solution, the behaviour near the wave head. The high-frequency limit (large s) of the 
inverse Laplace transform of $ gives 

00 

@ N x (a;)-lr(y, 27-%, -@ix),  (5.61) 
n-1 

andfor 12  l - Y > O  
m 

n-1 
$ - - Z [2.rriai Ai(a~)(l-g):]-lr(~,2~-x+l-C-Q(l-g)~, - ! p i x ) ,  (5.62) 

where r is the inverse Laplace transform : 

(5.63) 

Applying the method of steepest descents (Drazin & Reid 1981) in the limit of small 
71 yields 

(5.64) 
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This completes the development of the long-time solution near the wave head. 
The most striking features of this solution are contained in the exponential 

dependence of (5.64). The locus of the wave head (i.e. where r(v,q,/?) = 0) is given 

by q = 2~-~+1-[--2(1-[)f 3 = 0. (5.65) 

Because of the dependence of r on 7, not only is 4 zero at  the wave head, but all 
its derivatives are also zero. Thus the flow is smooth a t  the wave head. The 
/?-dependence of the exponential (i.e. - $ a k x )  shows that the signal near the wave 
head (i.e. 7 = O(1)) is strongly damped. As a result, for long times the signal near 
the wave head is extremely small and to first approximation is adequately represented 
by the first term in the series (5.61) and (5.62). Such a weak signal would be difficult 
to resolve both with a numerical solution and also experimentally. Specializing (5.65) 
to the shock and writing the result in dimensional variables, we have 

J .  B. Bdzil and D .  S. Stewart 

(5.66) 

This is in exact agreement with Whithams (1974, p. 294) result for the speed with 
which an acoustic disturbance travels along a shock. Thus for the problem of the 
propagation of an edge rarefaction into a detonation reaction zone, we have another 
example of a wave-hierarchy problem where the hydrodynamically significant signal 
is not propagated at the wave front,. 

In  summary, we have shown that the hyperbolic equations (5.7) and (5.9) have a 1D 
steady-state solution that is stable to transverse disturbances. These equations also 
describe the interaction of an edge rarefaction with a detonation reaction zone. For 
this problem they predict that the region of 2D time-dependent flow is separated 
from the 1D steady flow by a distinct wave head whose intersection with the shock 
propagates at a fixed velocity. The flow at the wave head is continuous, and at  late 
times the 2D signal near the wave head is very weak. Far from the wave head the 
shock perturbation becomes large and the flow has a diffusive character. This 
diffusive flow matches into the quasisteady flow described in 94. In this region the 
large shock displacement is governed by the parabolic equation (4.10). 

Figure 2 shows snapshots of the shock locus, wave head and the end of the reaction 
?one, expressed in terms of the variables of region P, at T = 0.5 and T = 1.0 for 
S = 0.1 and a = 8 .  The composite shock locus was constructed by plotting the 
minimum at a given X of the set {high-frequency hyperbolic Y, low-frequency 
hyperbolic Y, parabolic u). A numerical solution for the parabolic region Y was 
found using the International Mathematical and Statistical Library (IMSL) software 
package DPDES. For T 2 0.5 and the parameter values selected, only the leftmost 
12 yo of the 2D flow region is governed by the hyperbolic equations. Also, the distance 
between the actual hydrodynamic wave head and the region where an appreciable 
shock deflection is observed (which might be considered as the location of the 
‘apparent’ wave head) is large. 

6. Discussion of results and summary 
In this section we discuss the features of our calculations that we believe are 

generally applicable for describing the propagation of 2D detonation waves in 
condensed phase explosives. 

In the context of the explosive model considered, we have shown that region P 
is the largest and most important region of the flow. The largest shock deflections 
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1D 

FIQIJRE 2. Snapshots of the two-dimensional time-dependent reaction zone a t  T = 0.5 and T = 1 .O 
for 6 = 0.1 and a = 3. The upper part of each curve is the composite shock locus, the left part is 
the wave head and the lower curve is the end of the reaction zone. The one-dimensional region is 
denoted by (lD),  the hyperbolic region by H and the parabolic region by P. The chain-dotted line 
connects the transition points between regions P and H. 

and flow divergences are obtained in this region. Since the dynamics of the largest 
flow region is controlled by a relatively simple parabolic problem, it is possible to 
calculate experimentally important transient features of the flow in a simple way. 
For example, we can consider how long it takes for the 1D wave, subjected to side 
rarefactions, to become a steady 2D wave. 

To answer this question, we now consider a slight extension of our work, which 
is based on the assumption that the main characteristics are controlled by the 
parabolic problem. We consider the initiation of a finite-width slab-geometry rate 
stick by a 1D detonation. This problem is controlled by 

Jy,T+(y,x)2 = Y , x x ,  

Y,T+(YJ2 = 1, 

subject to the wall boundary condition 

a symmetry condition on the centreline 

Y,, = O  a t X  = R, (6.3) 

where R is the scaled charge size, and the initial condition 

Y=O atT=O. (6.4) 

The above problem has a steady travelling-wave solution, which is given by 

Y = AT-ln cos [At(X-R)] +const, (6.5) 
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t- 

- 10 I 
FIGURE 3. Results of the numerical solution of (6.1)-(6.4) for the case A = 0.1. The early-time 
plateau exhibited by the solution at the centreline is in qualitative agreement with the result that 
is expected from the full hyperbolic-parabolic description of the problem. 

where A is the steady velocity deficit (i.e. it defines the steady-wave speed for the 2D 
detonation), given by 

We can find a relationship between the velocity deficit and the charge size (similar 
to the steady result in Bdzil 1981) as 

DcJ(l -!$'A). (6.6) 

R = A-4 tan-l [(A-' - l)t]. (6.7) 

R - +  nA-:-l+ .... (6.8) 

In the limit of a small velocity deficit, (6.7) becomes 

Equation (6.8) gives a 10% or better result for R when A < 0.5 and shows that 
A ot R-' for large R. 

When Y can be represented as (6.5) plus a small perturbation, an analytical 
solution of (6.1)-(6.4) is easily found. This linearized problem shows that the final 
approach to (6.5) goes like 

A - Y T  
A 

' - const [ l - 4  sin2 [Ai(X-R)]] exp (-SAT), (6.9) 

where (A - Y , , ) / A  measures the fractional departure of the local shock velocity from 
its 2D steady-state value. Equation (6.9) shows that in the final stages the decay 
constant is 8A. Combining this with (6.8), we find that when R is large the damping 
goes like exp ( -2z2R-'T). Thus R-'T is the fundamental scaled variable for large 
explosive charges at long times. The trigonometric dependence in (6.9) shows that 
the velocity is a decreasing function of time a t  the centre (X = R) and an increasing 
function of time at the edge (X = 0). At the intermediate value X = R+ A-4 sin-'+, 
(6.9) shows that (A- YmY,)/A = 0. 
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In  order to determine the range of validity of the linearized result, numerical 
simulations of (6.1)-(6.4) were performed using the IMSL routine DPDES. The 
values of ( A -  Y , * ) / A  versus T at the centre and the edge, obtained from the 
simulations, are plotted in figure 3 for the case A = 0.1. The results obtained with 
the simulations are certainly in qualitative agreement with (6.9). For the case 
considered in $5 (i.e. 6 = 0.1 and a = g), (5.66) predicts that the wave head reaches 
the centre of the charge at T x 0.7. Remarkably, the solution of the parabolic 
problem (6.1)-(6.4) shows that (A - Y T ) / A  a t  the centre is very nearly equal to the 
initial 1D value for T < 0.7. An analysis of the numerical solution for T 2 2 shows 
that exp ( -8AT)  describes both the centre and edge time dependence of the 
relaxation. Numerical simulations were done for other values of the parameter A. 
These simulations show that for A = 0.01,0.05,0.1 and 0.5 the function 

A - Y ,  
A 

* x 8 exp ( - 8 A T ) ,  (6.10) 

describes the relaxation at the edge for T > 15, 5 ,  2 and 0.7 respectively. Thus (6.9) 
provides a reasonable approximation of the time dependence of the parabolic 
approximation to the rate stick problem. 

For all the simulations done, it was observed that there was an early-time plateau 
for ( A -  Y , T ) / A ,  during which the solution at the centre is effectively undisturbed 
(see figure 3). These results suggest to us that the parabolic equation can be used for 
the shock (i.e. without the hyperbolic wave head) to provide a reasonable description 
for explosive charges that are wide enough to have a parabolic long-distance region. 

In  summary, we have shown that in the reaction zone, the complete solution to 
the 2D time-dependent detonation edge rarefaction problem has a hyperbolic region, 
governed by 

U,,+UU,Z.-v,, = 1 ,  (6.11) 

u,,+v,,* = 0 (6.12) 

and (5.10)-(5.12), and a parabolic region governed by 

‘ y , T +  ( y , x ) z  = ‘y,xx, (6.13) 

(4.14) and (4.15). In  the long-time limit the hyperbolic problem generates a 
‘boundary layer’ that defines the hydrodynamic wave head, which makes our 
solution consistent with the properties of the underlying Euler equations. However, 
in the hyperbolic region the flow is only weakly 2D. The bulk of the strongly 2D flow 
is diffusion-like and is controlled by the parabolic equation (6.13). The practical 
significance of this result is that the relatively simple diffusion-like description can 
be used to calculate the gross shock dynamics of 2D time-dependent detonation. 

In view of these results, it  is interesting to speculate on two possible extensions 
of this work. Equation (6.13) was derived for a flow that is principally in the z1 
direction. It would be useful to derive a less coordinate-dependent result, analogous 
to (6.13), in terms of shock-centred intrinsic 2D coordinates (Serrin 1959). Such a 
result might have utility as a reactive ‘Huygens’ construction. A second more 
significant generalization of these results would be to extend the model to a 
state-dependent heat-release rate via a distinguished limit procedure. Presumably, 
the result of such an extension would be to replace the right-hand side of (6.1 I )  by 
a source term that depends on, say, u. This would introduce the possibility of 
reaction-zone instability and perhaps even Mach-wave formation in the structure of 
the detonation reaction zone. 
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Appendix A 
I n  this appendix we analyse the flow near the shock attachment point, which is 

defined as the intersection of the leading shock and the explosive-vacuum interface. 
The end result of the analysis derives the boundary condition (4.14). 

The analysis is most easily carried out in local polar coordinates (R, 0) in a frame 
with its origin at the attachment point. The local polar coordinates are defined in 
terms of the lab coordinates (zl, r )  by 

r =  Rsin8,  z1 = RcosO+$(O,t)+D,,t. (A 1) 

The relative particle velocity, denoted by u, is related to the particle velocity in the 
lab frame u1 by 

u = u1 - [D,, + &o, t ) ]  e ,  (A 2) 

= u,e,+u,e, = Me,+Ne,, 

where 

In order to  formulate the problem in the corner, we must rewrite the governing 
equations (2.10)-(2.14) and the shock conditions (2.16)-(2.19) in the new coordinates. 
These steps have been left to  the reader. 

We now show that a local solution can be constructed near the attachment point 
as a local coordinate expansion in R. Thus we expand the solution as 

eR = cos 8 e, + sin 0 e,, e, = cos 8 e, - sin 8 e,. (A 3) 

(A 4) 1 
P = Fo)(O,t)+O(R), p = p(O)(O,t)+O(R), 

u 6 - - M(0, (8,t)+O(R), U R  = N'''(@,t)+O(R), 

c2 = (C(0))2+O(R), 

$ = g O ) ( t ) + R  cos8S1)(t)+O(R2). 

(Note that to reduce the notation, all expansion variables and superscripts refer to  
the R-coordinate expansion in the corner.) 

We expect that a t  leading order the solution contains the classic Prandtl-Meyer 
(PM) singularity. The expansions are introduced into the governing equations and 
shock conditions. After some manipulation, we find that 

[(C(0))z- ( M ( 0 ) ) 2 ] [ M $ ) +  N(O)] = 0, (A 5 )  

(A 6) M(O)"(O) - M(O)] = 0 

and [(C(0))2- (M(0))2] C(0) ,o = 0. (A 7) 

,e 

Equations (A 4)-(A 6) admit two special solutions, corresponding to  constant-state 
regions and a P M  fan. In  fact, the entire flow near the corner is constructed from 
these solutions. It consists of a constant state (region 1) immediately behind the 
shock, followed by the PM fan connected to another constant state (region 2) whose 
far boundary forms the vacuum-explosive interface (see figure 4). The constant state 
immediately behind the shock is the shocked state to leading order. This requires that 
u,, u, and c2 take on their shock values. Note that M(O) and N(O) change in region 1 
according to  the definition (A 2). 
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Region 1 3 

FIGURE 4. Flow near the corner. 

In particular, the constant state in region 1 must then match with a state that can 
be attained by the PM fan. The structure of the P M  fan is described by the condition 

(C(0))2_(M(0))2 = 0, q L M ( 0 )  = 0. (A 8) 

For the present purposes, it is sufficient to say that explicit values for the constant 
states in region 1 and 2 and a complete description of the solution in the P M  fan can 
be obtained. 

The requireu boundary conditions on the shock slope can be derived in a simple 
way from matching the constant state behind the leading shock with the PM fan. 
First we note that in the P M  fan the state is either sonic or supersonic, since 

(C(0))Z- [(M(0’)2 + (N(O))2] = - (N(0))2 < 0, 

(C(0))Z- [(M(0))2+ (N(O))2] 2 0, 

(A 9) 

(A 10) 

whereas in region 1 we have the result that 

for sufficiently small. Thus, in order to match these regions, we must require 
that to leading order the flow is sonic immediately behind the shock. Thus we arrive 
at the condition (by making the left-hand side of (A 10) vanish identically) 

where 

Writing the above result in terms of region-P variables and expanding for small 
6 ultimately yields the result (4.14). This is a relationship between the shock velocity 
and the shock slope at the explosive-vacuum interface. 
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Appendix B 
In this appendix we formulate the boundary conditions that we apply to (5.14) 

at the end of the reaction zone (6 = 0) and at  the edge (z = 0). We begin by 
considering the boundary g = 0. 

Since we are considering a detonation that is unsupported to the rear (i.e. for 
5 + 0), the boundary condition at 6 = 0 will be determined locally and is not a 
function of the details of the inert supersonic flow near the piston (z’ = 0 at  the 
piston). Rewriting (5.7) and (5.8) in terms of the independent variable 5, 

it then follows that (h2),[ = 0 at y = 0 if v,, is regular. Thus either ( u ) + ~  = 0 or 
( u , ~ ) ~ - ~  = 0. Differentiating (B 1) with respect to 5 yields 

The flow is initially 1D. Therefore at  7 = 0, ( u ) ~ - ~  = 0 and u , ~  experiences a jump, 
given by (B 2), in response to the discontinuity in the rate. It can be shown that the 
ray paths for (B 1) are purely longitudinal at 5 = 0. Therefore 6 = 0 is a characteristic 
surface and the jump in u , ~  is maintained at 6 = 0. From (B 1) it follows that 
( u ) ~ - ~  = 0 for all times, with 

near 6 = 0. 
A more physically based argument can be made. Region H connects the 1D 

undisturbed region to region P. Since the flow is sonic at 5 = 0 in both of these regions 
(lD, u = 5, and 2D, u = (1 - lu,,,) 5) ,  uniformity of the solution argues for u = 0 at 
g = 0 in the hyperbolic region. 

The form of the boundary condition at g = 0 depends on the form of the rate law. 
For example, if the rate is given by R = k( 1 - A )  then the sonic locus is not everywhere 
coincident with the end of the reaction zone. 

A rigorous boundary condition at  the edge (x = 0) will not be derived. To do so 
would require a detailed analysis of the flow near the edge on distance and timescales 
shorter than z = 0(1) and 7 = O(1). Instead, we simply assume that u = 0 at x = 0. 
This is consistent with the shock result derived in Appendix A and the [ = O  
boundary condition derived earlier in this appendix. 

q5 = A(z,7)+B(z,7)Y3+ ... (B 3) 

Appendix C 
In this appendix we determine the solution of the linear boundary-value problem 

Y&.- [(is)2- (iw,)25] Y, = 0 (C 1) 

and Yn,5 = 0 at g = 1, Yn,5-isYn = 0 at 5 = 0, (C 2) 

6 = ei@(iwn)J[($s)2- (iw,)25], (C 3) 

which on introducing the independent variable 
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becomes Yn,fF;-5Y, = 0 (C 4) 

and Y,,~ = o at f; = I ,  Y,,E-[iY, = o at f; = 0. 

Equation (C 4) is the Airy equation. Its general solution can be written as a linear 
combination of the Airy functions Ai (6) and Ai (e-'iz[). Forcing the solution of (C 4) 
to satisfy the boundary condition at f; = 1 gives 

Requiring that (C 5) satisfy the boundary condition at 6 = 0, we get the determining 
equation for the eigenvalues ion : 

[ - &+, Ai (&-=,) + Ai' (&=,)I Ai' (e-'3t5= J 

- [ -ei~ff@c=o Ai (e-'iztc=,) + Ai' (e-'iz&=,)] Ai' (,&.=l) = 0. (C 6) 
The solutions of (C 6) in the limits of small and large s can easily be found. When 
s = 0, (C 6) degenerates to 

Ai' [ - (iw,)i]-Ai' [ -e'iff(iw,)i] = 0, (C 7) 

ido) 1 = 0, iw?) - [i+t(n-2)] R (n = 2,. . .). (C 8) 

which has the solutions 

Expanding (C 6) about (C 7) for small s and using the definition of the Wronskian, 
we find 

iw, - d + . . . ,  

iw, - [ i+ : (n-2) ]~+o(~t )  (n  = 2, ...I. 
Substituting (C 9) into (C 5) gives us the eigenfunctions in the small-s limit, with 

5 - [l-e-iiz]Ai(0)+.... (C 10) 

The large s limit of (C 6) is obtained by noting that for the wave problem under 
consideration, s c c i w  and at leading order w is real. It then follows that 
K > arg(&,) > in, so that -@=,Ai (&.=o)+Ai'(&=o) is exponentially large and 
- ei@@,, Ai (e-iiff&=o) + Ai' (e-i!z(5=o) is exponentially small. Therefore at leading 
order (C 6) becomes Ai' (e-'iffg5=J - 0, (C 11) 
where the zeros of (C 11) are 

ai--[$(4n-3)]% (n= l , . . . ) ,  (C 1-21 

(C 13) 

(C 14) 

(C 15) 

which yields the large-s limit of the eigenvalues : 

iw, - 4s - !p i ( :s) t  + o[ (&)-ti. 

Y, - Ai (e-'iz(). 

L = Yn,~[Ytn,5-~~YY,l- Ym,5[Y,,5-4~Y,I. 

In  this limit the eigenfunctions are 

The orthogonality condition for the eigenfunctions is obtained by studying 
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Differentiating (C 15) with respect to 5 and then using (C l ) ,  we find 

J .  B. Bdzil and D.  S. Stewart 

L,< = $?[(iw,)2-(iw,)2]cY, Y,. (C 16) 

Since L = 0 at 6 = 0, 1, it follows that 
fl 

[Y, Y, dc = 0 (n =+ m). Jo 
The normality condition is obtained by studying s: Y, Yn,ccdc, s: Y,,< Y,,,dc and 
j:6Yn,s Y,,,dc. Using (C 1) and then integrating by parts, we find 

3(iw,)2J01cY:dc = ( i w , ) - z [ ( i w , ) 2 + 2 ( ~ ~ ) 2 ] [ ( ~ ~ n ) 2 - ( ~ ~ ) 2 ] (  y2,)c=1+$( r",),=,. (C 18) 

The eigenfunction expansion of (5.52) requires us to evaluate s: c exp ($sc) Y, dc. 
Starting with siexp (!& Yn,gdc, using (C 1) and integrating by parts, we get 
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